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Abstract 

Concise probabilistic formulae with definite crystal- 
lographic implications are obtained from the distribution 
for eight three-phase structure invariants (3PSIs) in the 
case of a native protein and a heavy-atom derivative 
[Hauptman (1982). Acta Cryst. A38,289-294] and from 
the distribution for 27 3PSIs in the case of a native and 
two derivatives [Fortier, Weeks & Hauptman (1984). 
Acta Cryst. A40, 646-651]. The main results of the 
probabilistic formulae for the four-phase structure 
invariants are presented and compared with those for 
the 3PSIs. The analysis directly leads to a general 
formula of probabilistic estimation for the n-phase 
structure invariants in the case of a native and m 
derivatives. The factors affecting the estimated accuracy 
of the 3PSIs are examined using the diffraction data from 
a moderate-sized protein. A method to estimate a set of 
the large-modulus invariants, each corresponding to one 
of the eight 3PSIs, that has the largest [zal values and 
relatively large structure-factor moduli between the 
native and derivative is suggested, which remarkably 
improves the accuracy, and thus a phasing procedure 
making full use of all eight 3PSIs is proposed. 

1. Introduction 

The probabilistic theory of the three-phase structure 
invariants (3PSIs) that integrates the techniques of direct 
methods with isomorphous replacement was worked out 
by Hauptman (1982). The initial application (Hauptman, 
Potter & Weeks, 1982) confirmed the theoretical validity 
and promising potential of the approach. However, the 
mathematical complexity of the distribution makes it 
difficult to gain its further interpretation with crystal- 
lographic implications. Later, through some mathe- 
matical manipulations, Fortier, Weeks & Hauptman 
(1984a) obtained a useful interpretation of the distribu- 
tion formula in terms of experimental parameters, the 
diffraction ratio and the difference in the intensities of a 
native protein and its heavy-atom derivative and, 
subsequently, they applied a similar interpretation 
method to the distribution formula for the case of a 
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native and two derivatives (Fortier, Weeks & 
Hauptman, 1984b). Taking account of the resolution 
effects on distribution parameters, Giacovazzo, 
Cascarano & Zheng (1988) proposed a probabilistic 
formula for estimating the 3PSIs by fixing a triplet of 
reciprocal vectors H, K, L and choosing atomic 
coordinates to be the primitive random variables. The 
formula was first applied to direct solution of protein 
structures (Giacovazzo, Siliqi & Ralph, 1994; 
Giacovazzo, Siliqi & Spagna, 1994; Giacovazzo, Siliqi 
& Zanotti, 1995). For the special case of a native and a 
heavy-atom derivative, it was shown that the formula has 
a concise form different from the corresponding result of 
Fortier et al. (1984a) and allows an easier interpretation 
in terms of diffraction experiments. 

In this paper, we show that a concise expression can 
be directly obtained from Hauptman's distribution in the 
case of a native and a derivative, as well as from the 
distribution of Fortier et al. (1984b) in the case of a 
native and two derivatives, which is different from the 
formula of Giacovazzo et al. (1988) in approach but 
equally satisfactory in result. It is also shown here that 
the probability distribution of the four-phase structure 
invariants (4PSIs), which was recently derived by the 
present authors and a detailed account of which will be 
published separately, has the same property as that of 
the 3PSIs. Based on these results, a general formula for 
the multiphase invariants in the case of a native and 
multiple derivatives can be deduced. Finally, a phasing 
procedure that makes full use of the eight 3PSIs is 
proposed. 

2. The probabilistic formulae for estimating the 
3PSIs 

2.1. The case of a native protein and a heavy-atom 
derivative 

When the triplet of reciprocal-lattice vectors H, K, L 
satisfies H + K 4- L -- 0, the conditional probability 
distribution presented by Hauptman (1982) for eight 
3PSIs, 
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col = ~0n + CK + ~0L, c°s = ~n + gfK + ~PL, 

O92 = q3H "~ ~K "-]- 1/rL, We = 1/rn -~ lPK + qgL, (1) 
O93 = ~H "q- I~tK "q- q3L' 0")7 = 1]tn "q- (/gK "q- 1/rL, 

is [for the notation in this section see Hauptman (1982) 
unless otherwise indicated] 

Pi(.QilR1, R 2, R 3 , S 1 , S 2 , $3) ~ (1 /Ki)  exp(A  i cos .Qi), 

i = 1 . . . . .  8. (2) 

The Ai term can be written as 

A i = 2[/31C1RCzRC3RRIR2R3 n t- fl2(CIRCzRC3sR1R2S3 

-k CIIcC2sC3RRIS2R 3 -k CIsC2RC3RSIR2R3) 

q- ~3( CIRC2sC3sR1S2S3 -[- CIsC2RC3sSlR2S3 

+ CIsC2sC3RSIS2R 3) -.]- ~4C1sC2sC3s81S2S3], 

(3) 

where 

CjR -- 1, Cjs = I i (x ) / Io(x  ) (4) 

if the jth phase of the invariant is ~o, 

CjR -- l l ( x ) / l o (x  ), Cys = 1 (5) 

if the jth phase of the invariant is ~, and 

x=ZyRjS j ,  j =  1,2,3. 

In the case of a native and a heavy-atom derivative, 
the atomic content of the derivative (D) is assumed to 
equal the atomic content of the native protein (P) plus 
the heavy-atom content (H). Then, the parameters }, and 
flj, j -- 1,2, 3, 4, are reduced to 

1/2 1/2/z 
~/ - -  0"20 0"02 /t0"o2 -- 0"20), 

- , 3/2/z  
~l  "-" 0~300"203/2 -- (0"03 -- 0"30)0"20 /I,0"02 -- 0"20) 3, 

_ 1/2 
,/~2 = (0'03 0'30)0"200"02 /(0"02 -- 0'20) 3, (6) 

1/2 
~3 = --(0"03 -- 0"30)0"20 0"02/(O/02 -- 0/20) 3, 

3/2 
~4 = (0"03 -- 0"30)0"02 /(0"02 -- 0"20) 3. 

Substituting (6) into (3), we get 

-3/2 
A i - -  2t73Pr72p C1RC2RC3RRIR2R3 

-3 1/2 f-, .1/2 D 
q- 2t73HO'2H( C1s0"02 S 1 -- ~..lRtt20 /X 1) 

1/2 1/2 1/2 1/2 
X (C2s0"02 S 2 --C2R0"20 R2)(C3s0"02 S 3 --C3R0"20 R3), 

(7) 

where 

O'3p -"0"30 "-- E Z j  3, O'2p --0"20 --- Z Z j  2, 
P P 

O'3H ---0"03 --0"30 : E Z j  3, G2H - -0"02- -0"20  - -  Z Z j  2, 
H H 

(8) 

Z i is the atomic number of the jth atom in the unit cell 
and the summations over P and over H state that the 
indices j vary over protein atoms and over heavy atoms, 

.I/2D respectively. Obviously, Fit, u20 ,~j and FjD .U2c, - -  - -  tx02 O j ,  
j = 1, 2, 3, are the structure-factor moduli for protein 
and derivative, respectively. In terms of F e and F D, a 
simplified expression for A i is obtained: 

-3/2 
A i -- 2tr3eCr2e CIRC2RC3RRLR2R3 

+ 2a3ncr~3(ClsFm - CIRFtp) 

× ( C 2 s F 2 0  - C 2 R F 2 p ) ( C 3 s F 3 0  - C3RFgp) 
-3/2 -3/2 

-- 203P°'2p ClnC2nC38R1R2R3 + 2a3H°'2H .41.42.43' 

(9) 

where 

. 4 j = ( C j s F j D - C j R F j p ) I r ~ / 2 ,  j =  1,2,3,  (10) 

is a modified normalized structure-factor magnitude of 
the heavy-atom structure, as further described below. 
Define .4j = .4jR when Cjn = 1 and .4j = .4js when 
Cjs = 1, j = 1,2, 3. Then, for example, for 
w~ = 9h~ + ~0~: + ¢PL, (9) becomes 

-3/2 O,.v ,-v -3/2 
AI - -  2a3Pa2p  R1R2R3 + ~'V3H~'2H .41R.42R.43R (11) 

and, for co 5 = lp n + ~K + lPL' 

-3/2 
A 5 = 2Cr3eCr2e ClRC2RC3RRIR2R3 

-3/2 
Jr- 20"3Ht72H .41sA2s.43S • (12) 

The R1R2R 3 term of (11) is the well known traditional 
Cochran (1955) distribution, which is usually negligible 
for protein structures. The sign of A is determined by 
the AlnA28A3R term. When Cjs "" 1.0, i.e. when 2FRjSj 
is large, (11) is consistent with the simple algebraic rule 
of Karle (1983) if the distribution coefficient relevant to 
the content of heavy atoms, 2a3Ha23, is ignored. Since 
the formula of Fortier et al. (1984a) contains mixed 
terms of R and .4 besides the RRR and .4.4.4 terms, 
Fortier et al. concluded that the difference in the A 
values between Hauptman's distribution and Katie's 
simple rule is caused by these mixed terms. Our 
approach shows that there are no mixed terms in (1 l) 
and therefore the difference between Hauptman's 
distribution and Karle's simple rule is chiefly due to 
the distribution coefficient, which is missing in the 
latter, rather than the mixed terms. 

On the other hand, according to Karle (1989), it is not 
necessary to know information on the heavy atoms in 
order to apply the simple algebraic rule. Now it 
becomes clear that not requiring any knowledge 
concerning the heavy atoms is not an intrinsic advantage 
of the algebraic formula but a result of the absence of 

-3/2 ~ NHI/2 ,  the distribution coefficient. Because o-3nC~zn 
where N n is the statistically equivalent number of heavy 
atoms in the unit cell, there is an optimal amount of 
heavy-atom substitution, as pointed out by Fortier et al. 
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,T - 3 / 2  (1984a), which leads to sufficiently large ~'3H'-'2tt and 
[AIRA2RA3R [. In this regard, the distribution coefficient 
is important for obtaining reliability evaluation from A 
values although in some instances both the probability 
and algebraic formulae give identical results. 

Of the three kinds of quantities in (11), o, C and F 
(and R), the parameters a and C may be modified in 
order to obtain more accurate estimates. If the zero- 
angle atomic scattering factor Zj in (8) is replaced by the 
scattering factor fj, which is a function of II-ll, IK[ or 
ILl, i.e. 

a3e = ~--~jj(H)fj(K)fj(L), 
P 

cr3n = ~-]g(H)fj(Klfj(L), 
H 

a23n = ~f2(H)~-~.f~(K)~-~'~f~(L), 
H H H 

(13) 

then (11) is the same as the result of Giacovazzo et al. 
derived from a different route (Giacovazzo, Cascarano 
& Zheng, 1988; Giacovazzo, Siliqi & Ralph, 1994). 
The fact that the same result comes out from different 
derivation routes makes the A term more believable as a 
reliability measurement for probability estimation of the 
3PSIs. 

Since F D = Fp + F n and CjR or Cjs is the expected 
value of cos(~j - qgj) (Fortier, Moore & Fraser, 1985), 
where lpj-~0j = 0je D is the angle between Fp and F o, 
when the heavy-atom structure is known, CjR or Cjs can 
be calculated according to 

q R  o r  Cjs = (Fj2e + Fj]9 - f j 2 ) / 2 f j p f j D  . (14) 

Combining (9) and (14), we obtain a formula for A i 
incorporating the heavy-atom structure information, 

-3 /2  ~ t , 
A i "~ 2tY3HO'2H E mE 2n E 3n ,  ( 1 5 )  

where 

E jH _(FZp  + FZH 2 9 1/2 ' = -- FjD)FjH/_FjpFjna2n 

= E#I cos 0je n, j = 1,2, 3, (16) 

if the jth phase of the invariant is ~0, and 

E j n  (FfD + F~n 2 1/2 ' = ~ - Fje)Fjt.//ZFjoFj/4Crzn 

---- EjH COS Ojo u, j = 1, 2, 3, (17) 

if the jth phase of the invariant is ~. In (16), 0jp n is the 
angle between the structure-factor vectors of the native 
and heavy-atom structures, En the normalized struc- 
ture-factor magnitude contributed from heavy atoms 
and thus E~ is the projection of the normalized 
structure-factor vector of the heavy-atom structure on 
the structure-factor vector of protein structure. Simi- 
larly, in (17), Ojo n is the angle between the structure- 
factor vectors of the derivative and heavy-atom 

structures, thus E ~ is the projection of the normalized 
structure-factor vector of the heavy-atom structure on 
the structure-factor vector of the derivative structure. 

2.2. The case o f  a native prote in  and  two heavy -a tom 
derivat ives  

According to Fortier, Weeks & Hauptman (1984b), 
to which the notation in this section is referred except 
where stated, the conditional probability distribution for 
27 3PSIs in the case of a native and two derivatives is 
given by 

Pi(S2ilRI, R2, R3, S1, S 2, S 3, T 1 , T 2, T 3) 

~- (1 /Ki)  exp(A i cos I-2i), i = 1 . . . . .  27. (18) 

A i can be written as 

A i z 2{ill CIRC2RC3RRIR2R3 q- ~2[CIRC2RC3sRIR2S 3 

+ CIRC2sC3RR1S2R 3 + C1sC2RC3RS1R2R3] 

+ fl3[CIRC2RC3TR1R2T3 + CIRC2TC3RRI T2R3 

+ C1TC2RC3RT1R2R 3] + fl4[ClRf2sf3sRiS2S3 

-t- CIsC2RC3sSIR2S 3 -t- ClsC2sC3RS1S2R3] 

+ fl6[C1RC2TC3TR1T2T3 + C1TC2RC3TT1R2T 3 

+ C1TC2TC3RT1T2R3] + ~7CisC2SC3sS152S 3 

-q- flloC1TC2TC3T T1T2 T3 }, (19) 

where 

CjR = 1, Cjs = l l ( x l ) / lo (x l ) ,  Cjr - -  l l(X2)/lo(x2) 

(20) 

if the jth phase of the invariant is ~0, 

CjR = l l ( X l ) / l o ( X l ) ,  Cjs = 1, 

CjT ---- l l (xl) l l (X2)/ lo(Xl)lo(x2) 
(21) 

if the jth phase of the invariant is ~p, 

CjR = I l(x2)/lo(x2), 

C j =  1 

Cjs -- l l (x l ) l l (X2)/ lo(xl) lo(x2) ,  
(22) 

if the jth phase of the invariant is ~ and 

x,  = 2F, RjSj, x 2 = 2V2RjTj, j -- 1 , 2 , 3 .  

The y and/3 parameters are defined by equations (3.25) 
and (3.26) of Fortier et al. (1984b). Equations (18) and 
(19) require that the heavy atoms of the two derivatives 
occupy different positions in the unit cell. 

Assuming that the atomic content of the first (D1) or 
second derivative ( D 2 )  equals the atomic content of the 
native protein (P) plus the heavy-atom content (H 1 or 
H2), respectively, we define 
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O'3H, - -  0/030--0/300 - -  ~ Zj  3, °2H, "-- 0/020--°t200 - -  E Zj  2, 
Ht H l 

0"3//2 = 0/003--0/300 = ~ Z/3, °'2H 2 - -  0/002--0/200 = E Zj  2- 
1"12 H2 

(23) 

A similar approach to that in §2.1 gives 

A i "~ 20-3H ~ 0"231 (ClsFm,  - C i R F l p ) ( C 2 s F 2 D ,  --  C2RF2p ) 

× (C3sF3DI --  C3RF3p ) 

4- 2a3ih az32 ( ClrFw2 - CIRFIp) 

X (C2TF2D2 --  C2RF2p)(C3TF3D2 --  C3RF3p),  ( 2 4 )  

where 

F j p  .1/2D .i/2 t-, . i /2 ,-r 
--" tx200ax j ,  FjD I - -  tz020o j ,  FjD 2 - -  tx002 z j ,  j = 1, 2 ,  3 ,  

o r  

where 

cr-3/2 A 
Ai "~ 2o'3n,,-2H, "-~ in, A2H, ZaBn, 

-3 /2  
4- 20"3HzO'2H 2 AIHxA2H2A3H2 , 

Aj,,, = (q rj , - 

and 

AjH 2 - -  (CjTFjD z --  q . R F j p ) / ~ / 2 2 ,  

(25) 

(26) 

j -  1 ,2 ,3 ,  

are the modified normalized structure-factor magnitudes 
of the first and second heavy-atom structures, respec- 
tively. For the 3PSI w 1 -- tp H + tp K 4-¢PL, 

= _ 

(27) 1/2 
AjH 2 - -  ( q T F j D 2  --  Fj.p)/172H2, j = 1, 2, 3. 

It is interesting to note that (25) consists simply of the 
sum of two parts corresponding to the contributions 
from heavy atoms in the first and second derivatives, 
respectively. We are aware from this result that it is 
possible to deduce a formula for A i in the case of a 
native protein and multiple derivatives. 

When the heavy-atom structures for the two deriva- 
tives are known, Ai is given by 

~, 0,..- ,,~-3/217' I:; 'p 1:7 t 
A i  z-tJ3H I V2Ht a-'lH 1 t.,2HI t.,3HI 

_ - 3 / 2  is, p is,, is, t (28) 
4- 2CI3HzO2H2 LiHz~C'2H:F-'3H 2, 

where 

E;., = Era, cos 0jpn,, 
(29) 

E' in2 = E/n2 cos Ojpnz, j -- 1, 2, 3, 

if the j th phase of the invariant is ¢p, 

E;'n, = Effl, cos Ojotn, , (30) 

E;~ 2 = E/t.12 cos Ojpn2 cos 0/to,, j = 1, 2, 3, 

if the j th phase of the invariant is ~,  and 

E;H l -'- E jH  l COS OjPHi COS Ojeo2 , 

E' jnz -'- EjH2 COS OjO2, z , j = 1,2, 3, 

if the j th phase of the invariant is ~. 

(31) 

3. The probabilistic formulae for estimating the 
4PSIs 

Recently, we derived the probability distribution of the 
4PSIs for a pair of isomorphous structures. Only the 
main results are given here in order to compare the 
formulae with those for the 3PSIs. Details of the 
derivation and practical applications will be published 
separately. 

For a pair of isomorphous structures, the conditional 
probability distribution of the 4PSIs o~ 1 = 
~t~ + ~K + ~L + ~0M, where H + K + L + M = 0, 
given the eight structure-factor magnitudes [EHI, IEKI, 
IELI, IEMI, IGH[, IGK[, [GLI, IGMI, is given by 

PI ('(21 [Rl, R2, R3, R4, Si, $2, $3, $4) 

"" ( 1 / K l ) e x p ( A  l cos Y21), 

where 

g I = 

h i - -  

(32) 

2zrlo(Al), 

2[floR1R2R3R4 --  ~1 ( C I s S I R 2 R 3 R 4  4- C 2 s R I S 2 R 3 R 4  

+ C 3 s R I R 2 S 3 R 4  + C 4 s R I R 2 R 3 S 4 )  

4- fl2( CIsC2sS1S2R3R4 4- CIsC3sS1R2S3R4 

+ ClsC4sSIR2R3S4 + C2sC3sRiS2S3R4 

4- C 2 s C 4 s R I S 2 R 3 S  4 4- C 3 s C 4 s R i R 2 S 3 S 4 )  

-- fl3(CisC2sC3sSiS2S3R4 4- CisC2sC4sS1S2R3S4 

+ CisC3sC4sSd~2S3S4 + C2sC3sC4sRlS2S3&) 

+ ~4CIsC2sC3sC4sSIS2S3S4], (33) 

gl - - - [ E H ] ,  R2 --IEKI, R3 --IELI, R4 --IEMI, 
(34) 

81-1Gnl,  82--IGKI, 83--IGLI, S4--[GMI 

and Cjs = I1(2vRjSj)/Io(2VRjS/) is the ratio of two 
modified Bessel functions. 

In the case of a native protein and a heavy-atom 
derivative, if the atomic content of the derivative (D) 
equals the atomic content of the native protein (P) plus 
the heavy-atom content (H), the parameters }, and flj, 
j = 0, 1,2, 3, 4, can be greatly simplified,: 

y .__ 

~ =  

fll = 

f12 = 

f13 = 

1/2 1 / 2 . /  
0/20 0/02 /I.0/02 - -  0/20), 

0/40/0/20 .qt_ (0/04 --  0/40)0/20/(0/02 --  0/20) 4, 

_ 3/2 1/2 
(0/04 0/40)0/20 0/02 /(0/02 --  0/20) 4, 

(0/04 - -  0/40)0/200/02/(0/02 --  0/20) 4, 
_ 1/2 3/2 

(0/04 0/40)12/20 0/02 /(0/02 - -  0/20) 4, 

(0/04 --  0/40)0/22/(0/02 --  0/20) 4, 

(35) 
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where Clmn is defined by equation (1.3) of Hauptman 
(1982). Substituting (35) into (33) and noting that 

1/2 1/2 
Fjo = o~02 Sj and Fie -- c+:0 Rj, we have 

a 1 -- 2O'4P(y22Rig2R3R4 --~ 2 0 " 4 H O ' 2 2 A I A 2 A 3 A 4  , (36) 

where 

A j = ( C j s F j D - F j p ) / a ~ ,  j =  1 ,2 ,3 ,4 ,  (37) 

O+4p --- ~ Zj 4 , O '4H -~ ~ Zj 4 , ( 3 8 )  
P H 

and cr2e and cr2H are defined by (8). Because 
a4pcr{ 2 << cr4na{ 2, the first term of (36) is negligible. 
Accordingly, 

A t - ~  2 C r 4 H C r 2 H 2 A I A 2 A 3 z A 4  . (39) 

Equation (39) is one of our major results. Clearly, (39) 
is analogous to (11) in properties: (a) the reliability 
parameter A l depends mainly on the contribution from 
heavy atoms in the derivative; (b) reliable estimates can 
be obtained even when the structure factors themselves 
are small provided that the I/xjl values are large; (c) 
since the Ay's are signed values, both 0 and 180 ° 
estimates are obtainable through (32). 

4. General probabilistic formulae for n-phase 
structure invariants in the case of a native protein 

and m heavy-atom derivatives 

For n (n >_ 3) reciprocal-lattice vectors H satisfying 
)--]j~l Hj = 0, in the case of a native protein (e) and m 
heavy-atom derivatives (D k, k = 1 . . . . .  m), there are Q 
n-phase structure invariants. Assume that the heavy 
atoms (H~,k = 1 . . . . .  m) of the m derivatives are 
located in different positions in the unit cell. Given 
the n × (1 + m) structure-factor magnitudes related to 
the native and the m derivatives, which are represented 
by a group of non-negative numbers Rip, RiD k, 
j---- 1 . . . . .  n, k = 1 . . . . .  m, the conditional probability 
distribution of the n-phase structure invariants w i, 
i = 1 . . . . .  Q, can be directly deduced from the results 
introduced above: 

ei(A'-2ilRjp, RiD" j = 1 . . . . .  n; k -- 1 . . . . .  m) 

~_ (1/Ki)exp(AicosI2i) ,  i - -  1 . . . . .  Q, (40) 

where 

K i = 2rclo(Ai), 

A i ~ 2 ~'~ GnnkO'2H~ 2 f i  AjH k , (41) 
k=l j=l 

j =  1 . . . . .  n; k - -  1 . . . . .  m. (42) 

The a parameters have similar definitions to those in 
(8), (23) and (38). Cjp and C~o k, j - 1  . . . . .  n, are 
obtained by comparing the subscript P or D~ of thej th  C 

with the j th  phase of the invariant. If they both 
correspond to the native or both to the same derivative, 
then Cjp or Cjo k - 1, j = 1 . . . . .  n. If one corresponds to 
the native and the other to the derivative, then 

Cjp or Cjo k = ll(2ykRjpR)ok)/lo(2rkRypR)ok), 

j -- 1 . . . . .  n, (43) 

where 
1/2 1/2 

Yk --" 0"2p 0"2Ok ~0"2Hi" (44) 

If they correspond to the different derivatives k 1 and k2, 
respectively, then 

Cjo,, or Cjok2 = ll(2yk~RjeRjok,)ll(2gk2RjvRjo~2) 

× lo(2YklRjeRjDk,) -llo(2),kzR.ipRjo,2)-' ,  

j -- 1 . . . . .  n. (45) 

5. Test calculat ions 

The experimental data for the protein cytochrome %50, 
space group P21212 t, molecular weight "~ 14500, and 
its PtCl~- derivative (Timkovich & Dickerson, 1976) 
were used for test calculations to examine the factors 
affecting the accuracy of the 3PSI estimates. The 
number of measured independent reflections up to 
2.5 A, resolution is 2993 for the native and 2807 for 
the derivative. 

To compare the estimate results, tests 1, 2 and 3 are 
designed for various subsets of the reflections selected 
by different thresholds for R and IAI values. The 
calculations were performed using (11), i.e. only the 
3PSI w I -- ~Pn + ~ + +OL was estimated. The definitions 
of the subsets and the results for tests 1, 2 and 3 are 
given in Table 1. It can be seen that, for the reflections 
with the largest IAI values, test 3 gives not only a higher 
accuracy but more triplet relationships when the IAmi n I 
value is given. In each case, the average phase errors 
(l+b3 - wl) decrease with increasing IAI values but there 
is a rebound of the 
This is probably 
disordered solvent 
large IAI values at 

Test 4 was done, 

errors at the top of the IAI values. 
due to the scattering effect of 
molecules on the reflections with 

low resolution. 
as shown in Table 2, using the same 

reflections as those for test 3 in order to judge whether 
the effectiveness of (11) can be enhanced by substituting 
(13) for (8) to calculate the a parameters. For the 
convenience of comparison, the results of test 3 were 
reaccumulated in Table 2 according to various IAminl 
values, which were chosen so as to allow the N3 values 
to approximately equal those of test 4. Comparison of 
test 3 with test 4 suggests that the substitution of (13) for 
(8), i.e. atomic number Zj is replaced by scattering 
factor fj(H) in the cr parameters, only results in an 
overall rise of the IAI values and has little effect on the 
estimate accuracy. Such an effect is quite different to 
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Table 1. Statistical results of  the 3PSIs estimated via 
(11) from the experimental data of  cytochrome c55 o 

N 3 is the number of the 3PSIs having IAI > IAminl, % is the percentage 
of the 3PSIs whose cosine signs are correctly estimated, 4'3 (°) is the 
true value of the 3PSI and oJ (0 or 180 °) is its estimated value. The 
subsets of reflections used in the calculations are defined as follows. 
Test 1:619 reflections with R > 1.49; test 2:631 reflections with 
R > 1.20 and IAR[ > 0.35; test 3:592 reflections with [AR[ > 0.70. 

Test 1 
[hminl N3 % (14'3 -- °91) 

0.0 51209 54.4 84.7 
0.5 7375 70.0 66.3 
1.0 1 9 0 3  79.3 52.2 
1.5 728 88.0 39.6 
2.0 309 91.9 34.6 
3.0 83 86.7 41.2 
4.0 24 100.0 15.5 
5.0 7 100.0 0.0 

Test 3 
IAmin[ N3 % (1¢3 -- o91) 

0.0 51726 77.0 55.5 
0.5 49212 77.6 54.6 
1.0 29024 82.1 47.7 
1.5 14600 86.4 40.2 
2.0 7686 87.4 36.9 
3.0 2718 85.2 37.8 
4.0 1 1 5 2  76.6 48.9 
5.0 591 69.9 57.3 

Test 2 
IAminl N3 % (14'3 -- °°l) 

0.0 51207 63.6 74.0 
0.5 18638 71.2 64.8 
1.0 5760 78.3 54.4 
1.5 2324 85.2 44.7 
2.0 1053  87.6 39.2 
3.0 301 88.4 34.4 
4.0 109 92.7 28.7 
5.0 39 87.2 34.8 

that in the small-molecule case observed by 
Giacovazzo, Cascarano & Zheng (1988). Calculations 
similar to tests 1 to 4 were also carried out on the error- 
free diffraction data of cytochrome %50 and its PtC1 ]- 
derivative, which were obtained from the known atomic 
coordinates to a resolution of 2.5 A (total 4159 structure 
factors). The results confirm those from the experi- 
mental data but, as expected, they have higher accuracy 
and no error rebound at the top IAI value. 

The role of the reflections with large I zal values, as 
shown in Table 1, has already been emphasized by 
Giacovazzo, Siliqi & Ralph (1994) for the direct crystal 
structure solution of proteins. In their successful 
phasing procedure (Giacovazzo, Siliqi & Spagna, 
1994; Giacovazzo, Siliqi & Zanotti, 1995), a small set 
of reflections with large IAI and R values, just like the 
subset in test 2, was first phased and then used as seeds 
for subsequent phase expansion. The condition 'large 
I zal' selects the reflections whose phase values may be 
reliably estimated and the condition 'large R' is used in 
order to guarantee a valuable contribution to Fourier 
synthesis once the reflection is phased. However, the 
limitations of their procedure are: 

(a) the seed set does not include all of the reflections 
with the largest 1,51 values owing to the restriction of the 
R threshold; 

(b) not all types of the invariant but only the 'pure' 
invariant w~ = q9 n + ~0K + qgL is used in the phasing 
procedure. 

According to Table 1, the subset of reflections in 
test 3 seems to be more advisable than that in test 2 

Table 2. A comparison between the estimated results of 
the 3PSIs with the cr parameters calculated via (8) (test 
3) and via (13) (test 4) from the experimental data of 

cytochrome c55 o 

Test 3 
[Arninl N3 % (l~b3 - o91) 

0.00 51726 77.0 55.5 
0.65 44308 78.8 53.0 
0.99 29416 82.1 47.8 
1.33 18392 85.0 42.5 
1.68 11431 87.1 38.6 
2.03 7454 87.2 36.9 
2.74 3477 86.3 36.7 
3.42 1853  81.5 41.6 

Test 4 
IAminl N3 % (14'3 -- O91) 

0.0 51726 77.0 55.5 
1.0 44402 78.8 53.0 
1.5 29463 82.2 47.6 
2.0 18312 84.6 43.1 
2.5 11479 86.0 40.3 
3.0 7482 86.2 38.7 
4.0 3484 85.0 39.2 
5.0 1 8 4 5  80.3 44.6 

as seed set for the sake of accuracy. But the problem 
is that test 3 may include some reflections with small 
R values because only the I zal value is considered as 
the selecting condition and these weak reflections 
usually have large phase errors, which propagate 
easily to the other reflections during phase expansion. 
In order to solve this problem, we consider ways for 
making full use of all eight 3PSIs. We note the fact 
that for the reflection having larger I zal value, even if 
the R value is rather small, the S value can be large 
and vice versa. Accordingly, the phases, ~o or ~O, 
associated with the larger structure-fact0r magnitudes 
can be used to constitute the triplet relationship 
corresponding to one of the eight 3PSIs in (1). For 
example, if R l < S l, R 2 > S 2 and R 3 < $3, then the 
3PSI co 7 = ap n +~o K +~pL is actively used in the 
phasing process and the corresponding A 7 value is 
calculated via (9), 

-3/2 2ff3Har2 3/2 A A 7 --  2a3ecr2e C1RC3RR1RzR 3 -k- I s A 2 R A 3 s  • 

This enables us to obtain a set of the most reliable 
3PSIs among the reflections with the largest Izal 
values. Such invariants are here called 'large-modulus 
invariants'. 

Table 3 lists the results for the pure invariants 
(test 5) and the large-modulus invariants (tests 6 and 
7) estimated from the error-free data. Indeed, the 
comparison of test 6 with test 5 indicates that a 
remarkable increase in accuracy can be achieved by 
using the large-modulus invariants. In the calcula- 
tions of A values for the large-modulus invariants, 
the parameters CjR and C:  may no longer be 
negligible since some of the 2FRjSj. may happen to 
be small. In test 6, CjR and Cjs were calculated from 
(4) and (5) while they were assigned to have a value 
of 1.0 in test 7. It is observed from the comparison 
of test 6 with test 7 that the number of invariants 
(N3) for test 7, where CjR and Cjs are ignored, is 
smaller than that for test 6 at the same accuracy 
level, especially for those with [hminl > 2.0. There- 
fore, the use of CjR and Cjs is advisable for the 
large-modulus invariants. 
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Table 3. A comparison between the estimated results of  
the pure invariants via (11) (test 5) and the large- 
modulus invariants via (9) (tests 6 and 7)from the error- 

free data of cytochrome c55 o 

In test 5,601 reflections with R > 1.0 and IARI > 0.6 were used. In 
test 6,679 reflections with IARI or IAsl > 1.0 were used and CjR or Cis 
was calculated via (4) or (5). In test 7, the same reflections were used 
as those in test 6 but CiR or C/s = 1.0. 

Test 5 
Ihrninl N3 % (]q53 -- O91) 
0.0 40986 86.6 45.1 
1.0 21546 94.6 33.6 
2.0 7237 98.0 23.2 
3.0 2759 100.0 15.3 
4.0 1025 100.0 10.0 
5.0 369 100.0 6.3 

Test 7 
[Amin[ N3 % (1q53 - wl) 

0.0 94551 99.9 16.6 
1.0 93566 99.9 16.4 
2.0 55920 100.0 13.1 
3.0 19257 100.0 9.1 
4.0 6026 100.0 5.2 
5.0 1822 100.0 3.2 

Test 6 
Iamin[ N3 % (1q53 - o91) 
0.0 94551 99.9 16.6 
1.0 94545 99.9 16.6 
2.0 65064 100.0 13.6 
3.0 24206 100.0 9.2 
4.0 7758 100.0 5.5 
5.0 2464 100.0 3.0 

6. Concluding remarks 

Through simple mathematical manipulations, we have 
simplified the probabilistic formulae for eight 3PSIs in 
the case of a native protein and a heavy-atom derivative 
(Hauptman, 1982) and for 27 3PSIs in the case of a 
native and two derivatives (Fortier, Weeks & Haupt- 
man, 1984b). The probabilistic formula for the 4PSIs, 
when simplified with a similar approach, is comparable 
in its properties with that for the 3PSIs. The analysis 
directly leads to a general expression of probabilistic 
estimation for the n-phase structure invariants in the 
case of a native and m derivatives. 

A method to estimate the large-modulus invariants is 
proposed, which remarkably improves the accuracy. 
The advantage of the method is to make use of the 
information concerning both the magnitudes and the 
phases of the structure factors of the derivative while 
only the magnitude information is utilized when the 
pure invariant 9n + ~OK + ~L is involved alone. More- 
over, since only the 3PSI associated with three large 
structure-factor moduli, rather than all eight 3PSIs, is 
calculated for each triplet of H, K and L, the method is 
not time consuming for computation. The limitation of 
the method is that the reflection set required by the 
large-modulus invariants is a mixture of the reflections 
from the native and derivative and may not contain 
enough native reflections to produce an interpretable 
electron-density map for the protein. So we suggest a 
phasing procedure in two steps. 

(i) A small set of reflections with the largest IARI or 
I zasl values is phased by a tangent multisolution process 
using the large-modulus invariants. The phases to be 
assigned could be either tp or ~ depnding on whether R 
or S is large. This requires a common origin and 
enantiomorph definition for the native and derivative. In 
addition, many reliable seminvariant phases could be 
obtained by a modified E1 formula for the case of 
isomorphous replacement (Hu & Liu, 1995; Liu & Hu, 
1996). 

(ii) The phases obtained above are used as seeds for 
further phase expansion to determine the other phases 
~on by constituting the triplet sets of the 3PSIs: 
~H + ~K -at- ~L, ~ + qgK + I~L, ~ n  + I~K -+- ~L, 
(/9 H -~-I~K-'1-I~L , w h e r e  t he  r e f l e c t i o n s  K a n d  L w i t h  
the largest IA[ values have been phased in (i) and the 
reflection H from the native protein has a sufficiently 
large R value for a useful contribution to the Fourier 
map. 

There may still be some reflections with IAI ~-- 0 but 
large R values that cannot be phased by this procedure. 
These reflections are not negligible especially for large 
protein structures. In this case, the diffraction data from 
two or more heavy-atom derivatives are necessary and 
(25) or (41) should play a role in the phasing process. 

This work was supported by the National Natural 
Science Foundation of China (no. 29573127). 
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